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It is often necessary to compare data-rich charts, tables,
diagrams, or drawings rather than the articles that con-
textualize that data. The objective of this research has
been to create a database of non-textual components
(here,maps) that are searchable independently of the arti-
cles from which they are taken, with the option to view
the source articles. The method mines words from the
articles that are near or associated with each component
map, and these mined words become the basis of region,
time, and subject indexing. The evaluation showed that
automatic indexing of the component maps by these
three facets works well, and indicates that a large-scale
component database following this model is viable.

Introduction

New Type of Database

Some would profit from direct access to data-rich elements
like charts or graphs that are contained within a document.
This is shown in Sandusky and Tenopir’s recent study of jour-
nal article components in which participants confirmed that
there is a “consistent, unmet need for systems that yield higher
precision searches. . .[to] journal article components like fig-
ures, tables, graphs, maps and photographs” (Sandusky &
Tenopir, 2008, p. 977). Comparable databases in which the
user searches for parts of a whole have been assembled for
software components (Yao, Etzkorn, & Virani, 2008). Users
look for sections of code that can be reused in another soft-
ware. In our research, it is not code but map images that we
index and classify, comparable to how biomedical images are
indexed (Liu et al., 2005).

Significance of the Problem

Standard Machine Readable Catalog Records (MARC)
for books in library catalogs contain a descriptive field that
tells whether a book includes a map. The record does not
describe the map, however. Articles rarely have even this
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level of indexing. This leaves thousands of information-rich
graphics inaccessible outside of the articles in which they
are embedded. This research posits a digital library of one
type of component—a map. Access is essential. “One of the
most important tasks in digital library management concerns
the categorization of documents. Effectiveness in performing
such a task represents the success factor in the retrieval pro-
cess, in order to identify documents that are really interesting
to the users.” (Esposito et al., 2008, p. 127).

Related Map Digital Libraries and Access

MAGELLAN, described by Samet and Soffer (1998), is
used for the acquisition, storage, and indexing of map images.
Their earlier work, MARCO (Map Retrieval by Content), sep-
arated the maps into terrain and content layers, and indexed
the maps by subject (Samet & Soffer, 1996).1 DIGMAP
holds images of historical maps and uses metadata from
map libraries for indexing (Borbinha et al., 2007). Closer
to our system is one described by Tan, Mitra, & Giles (2009)
that includes maps extracted from documents, with meta-
data from the documents for indexing. Their system does not
have ontology-supported indexes to aid retrieval for region,
time, and subject, as does ours. And while their system
indexes by field, it does not prioritize fields for indexing to
improve relevance of results retrieved, as does our indexing
procedure.

Scope and Outline

This article describes the making of a prototype
database of article components, presently accessible at
http://scilsresx.rutgers.edu/∼gelern/maps. We begin with
background about the design of comparable systems and
explain how ontologies potentially improve performance.
Then we present our MapSearch system with a diagram and
a description. We explain how text from an article associ-
ated with its component map that we use for metadata was

1The theme of a map is also its subject, so theme and subject are used
interchangeably in this article.
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harvested. We describe how domain ontologies to improve
retrieval were adapted, and how algorithms to automati-
cally index article components were coded from hand-made
heuristics. Indexing is according to region, time, and subject.
Compiling indexes from region and time metadata is more
straightforward than compiling indexes from subject meta-
data because each article has many subject terms and it takes
an extra step to decide which subject term dominates, and
hence, which subject category to use for classification. We
include a detailed account of the weighting system we used
for subject classification. Future research directions conclude
the article.

Background

An article component collection, whether charts, dia-
grams, maps, or other illustrations, amounts to a database
of images. Therefore, related work concerns classification
and image retrieval. Two strains of machine learning that
work for image retrieval are content-based image retrieval
that analyzes low-level information extracted from features
within the images (Nomiya & Uehara, 2007), and semantic
learning that clusters images based on metadata, labels, or
annotations (Liu et al., 2005). The difficulty with content-
based analysis is what has been called a “semantic gap”
between what the user asks for and the low-level features
that the system extracts (Gosselin & Cord, 2004). In this
respect, image indexing that uses metadata from journal
article captions is more reliable.

Automatic Classification

Automatic classification is convenient when it would take
too long to classify each item singly. Jain, Murty, and Flynn
(1999) and Oberhauser (2005) review the literature on the
automatic classification of items into categories. In prepa-
ration for creating a classifier algorithm, sample data are
separated into a training set and a test set. Patterns distin-
guished in the training set are the basis of heuristics, or
rules with some degree of generalizability for the classi-
fiers. The classifiers group items into labeled categories. The
match process between items and query may be mediated
with linguistic sources such as dictionaries or ontologies.
Analyzing misclassifications made during the training phase
hones the algorithms, which improves classifier generaliz-
ability before previously unseen items in the test set are run
for an evaluation.

The construction of an inverted index is fairly standard, and
an overview of the process is described in the Introduction to
Information Retrieval by Manning, Raghavan, and Schütze
(2008, chap. 2). Our indexes are divided into fields for map
caption, words in title, abstract, and so on. The words per
field are in a random set, or a “bag.” Each bag is tokenized
(split into individual words), with stop words (mainly pro-
nouns, articles, and prepositions) removed. Our documents
were exclusively in English, so we were not concerned with

accents or diacritics that would otherwise be normalized to
ensure matching. We did, however, need to stem plurals.2

Each time documents are added to the collection, a new index
is created, in what is called dynamic indexing.

The popular approach to classifying documents automat-
ically through the 1980s was knowledge engineering, or
manually defining rules to assign items to categories (such as
is done by a person indexing). By the 1990s, this lost favor
to the machine-learning approach in which the rules were
determined automatically from a set of preclassified docu-
ments. Types of classifiers include rule-based, probability-
based, decision tree-based, multivariate regression-based,
neural network-based, and nearest neighbor-based (Jain,
Ginwala, & Aslandogan, 2004, p. 565).

Accuracy obtained from machine learning is compara-
ble to that obtained by knowledge engineering, and does
not require individual rule creation (Sebastiani, 2002, p. 2;
Purpura & Hillard, 2006). Machine learning approaches
require a very large document sample that we were
unable to get, so the knowledge engineering approach
was expedient.3 It has been found that human interac-
tion in the process is more effective when interspersed
with the algorithmic process rather than when relegated
to only before or after the automated parts (Nagy &
Veeramachaneni, 2008). This human interaction has been
categorized as human-initiated or machine-initiated, and
described as durable (when used to alter system parame-
ters) or ephemeral (when used to label patterns or mod-
ify results, for instance) (Nagy & Veeramachaneni, 2008,
p. 237).

Why choose one method over the other? The drawback
to pure knowledge engineering is its inflexibility (rules may
require changing if categories are updated) and its lack of
portability (rules may need to be reworked for each domain).
In machine learning, on the other hand, the effort goes into
the construction of the classifier builder (or learner) rather
than into the classifier itself. But this may lead to inferior
classifications.

Rules are derived from analysis of patterns within clus-
ters as found in a training set of documents. Larger training
sets should be more generalizable. Blanco-Vega, Hernández-
Orallo, and Ramírez-Quintana (2005, p. 50) found, not
surprisingly, that the size of the dataset, the number of rules
that comprise the algorithm, and algorithm accuracy are
related. Accuracy increases as well with training set size.
While knowledge engineering methods tend to use a smaller

2Algorithms are available on the Web for stemming such as the Porter
Stemmer. In MapSearch, only a few lines of code cover aspects of stemming.
The suffixes –s, –ed, –ing, –ist, and –es are removed if its removal leaves
a valid word, or if removing the suffix and adding an –e would leave a
valid word. The same is true for adjectival endings –an, –ean, –ician, –ern,
–ian, which are removed if a valid word remains. Future research will entail
comparing stemming algorithms or adding more stemming code to what is
in use for MapSearch to see whether better results may be obtained.

3We waited for some months for a large number of articles from JSTOR,
but were ultimately disappointed.
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training set with fewer rules, each rule potentially is more
accurate because each is individually considered.

How does our work differ from most others? Ontologies
as used here are not invariably used for automatic classifica-
tion. In fact, the difference between methods is so pronounced
that ontology-related indexing has been viewed as a stream
of information retrieval separate from automatic indexing
(Kabel, de Hoog, Wielinga & Anjewierden, 2004).

The Ontology and Its Role in Improving
Retrieval Relevance

“Ontology” has been defined as a collection of concepts
and their interrelationships that provide an abstract view of an
application domain (Khan, McLeod, & Hovy, 2004, p. 71).
Ontology models have different degrees of structure (Brusa,
Caliusco, & Chiotti, 2006). The ontology may be able to
improve retrieval over keyword search by using semantics,
that is, word meaning, to expand matches with the words in
the target metadata or words in the user query (Khan et al.,
2004). The consequence is that results retrieved may be more
relevant, and recall may increase.

Semantic relevance in the linguistics literature has been
divided into two types: relational similarity, which amounts
to a correspondence among parent–child relationships, and
attributional similarity, which amounts to a correspondence
among synonyms (Turney, 2006, p. 379). MapSearch uses
both types of relevance to determine the retrieval set.

We use pre-existing hierarchically-arranged, controlled
vocabularies as ontologies. In our choice of ontologies,
in particular, our work differs from others. Rather than
create an ontology (Khan et al., 2004), or use the general-
purpose ontology WordNet (proven to be poor in information
retrieval, as shown by Gabrilovich & Markovitch, 2007,
p. 2329–2330), we adapted for subject indexing a controlled
vocabulary from the library profession—Library of Congress
Classification System. The World Gazetteer and GeoNames
are our ontologies for region.

The ontology, transparent to the user, allows what may
be called “smart” retrieval. “Smart” implies the ontology
helps the system determine what the words mean rather rely-
ing on a possibly senseless word match between target and
query term.

An Article Component Database

The MapSearch database consists of map images and
metadata referring to those images, all of which have been
extracted from journal articles and separated into three
indexes for region, time, and subject. The entire process
divides into pre-processing to identify the maps and meta-
data, and contextual processing of metadata to determine
the classification. Procedures planned for the automatic min-
ing of the data are described below, although for the purposes
of this particular study, the maps were located and extracted
manually.

Architecture of MapSearch

MapSearch will automatically index each component map
by region, time, and theme, and it will implement smart
(ontology-supported) retrieval by keyword term, browse cat-
egory, or both keyword and category. Although MapSearch
is still in development, its basic functions are diagrammed in
Figure 1. Maps and the metadata associated with the maps are
harvested from journal articles. When a user enters a browse
category or keyword, the system compares the query to tar-
get terms in the metadata. Results are displayed according to
semantic similarity by way of the ontologies, or according
to other criteria such as map size or clarity.

Mining Maps

Discerning what is on the printed page has been called
layout analysis. A review of the literature on physical layout
analysis and segmentation methods that partition a page into
text, image, and graphics is provided by Nagy (2000), while
work on extraction and classification of diagrams in .pdf doc-
uments is found in Futrelle, Shao, Cieslik, and Grimes (2003).
Layout analysis has been divided into physical layout analy-
sis based on content presentation, and logical layout analysis
based on content meaning (Marinai, 2008).

For the present research, maps were located manually, then
clipped with Adobe Acrobat from articles (most articles are
in .pdf and a few are in .html). Maps then were converted to
.jpg. The whole process eventually can be automated with the
help of a program that distinguishes a map from other kinds
of graphics based on characteristics of the type of graphic.
For example, the presence of straight lines will help distin-
guish maps and graphs. Such a program has been started by
Michael Lesk at Rutgers, and independently by Lee Giles at
Penn State. In the Lesk system, the page is divided into geo-
metric zones to distinguish white lines between the text and
other graphics. Tan et al. (2009) found that, in archaeological
journals, most features larger than 1/3 of the entire page are
maps. Error correction for this type of system would probably
be manual.

Harvesting Metadata to Index the Maps

We use as metadata the map caption, words in the map (to
be scanned separately), title of the article, and the sentence
within the article that referred to that map. The choice of what
metadata to harvest as dictated by preliminary experimenta-
tion is detailed in Gelernter (2008). We determined also the
field order for reliability of metadata as indicative of classi-
fication category. Insight into priority of field relevance was
carried into our classification heuristics.

A program has been created by Raymond Lu at Carnegie
Mellon in continuation of this research. The program will
separate title and caption, for example. To isolate words found
in a map image, a layer extraction programs that will separate
a map into base map and text has been started by Michael Lesk
at Rutgers.
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FIG. 1. Architecture of the MapSearch indexing and retrieval system.

How much metadata to harvest is yet another question.
During trials with the training set, we check not only classifier
accuracy (discussed separately below) but also the amount of
metadata necessary for classification accuracy. Some mea-
sure of confirmation of how much metadata is needed is
offered by Tan et al. (2009). They compare the retrieval
value of metadata from the caption field, the referring sen-
tence field, the caption and referring sentence combined,
and the document page that contains the map. They found
that the caption, referring sentence, and the combination of
the two performed quite accurately, and that adding more
metadata generally degrades performance.

Domain Indexes

It has been proposed that space, time, and theme should be
considered as retrieval elements for a basic web search system
(Perry, Hakimpour, & Sheth, 2006). Kemp, Tan, and Whalley
(2007) call these three the “space–time–theme composite.”
If these three aspects could be used for referencing all types
of information, as is argued by Hill (2006), they seem a solid
foundation for indexing maps. Even so, examination of actual
queries from people looking for maps reinforced the choice
of triple-facet indexing (Gelernter, 2008).

MapSearch contains three browse facets, each supported
by a separate index. One index contains metadata har-
vested per item with corresponding MapSearch categories for
region, another index contains the same metadata with corre-
sponding MapSearch categories for time, and the third index
contains the same metadata with corresponding MapSearch

categories for subject. Assignment of a given item to
those categories requires a particular classifier and ontology
for that domain.

Classification Categories

Different approaches are used in classification systems to
determine classification category labels, such that the labels
may precede or follow creation of categories. Preceding the
creation of the categories is the use of labels from exter-
nal controlled vocabularies, controlled vocabularies made
internally to reflect a particular knowledge domain, or vocab-
ularies derived from user terms as from user annotations
(for example, Srinivasan, Pepe, & Rodriguez, 2009). Alter-
natively, labels might be made by hand to reflect the topic of
machine-made clusters.

Our choice of category-label making for MapSearch
reflected our limited quantity of data. We did not have a
large enough data sample to cluster automatically, nor did
we have access to a large sample of user annotations or other
terms from which to create labels. For subject, we adopted
controlled vocabulary for category labels. Controlled vocab-
ulary external to the data has the possible advantage of being
independent, so that the vocabulary terms will be valid for a
much larger corpus. An in-depth description of how category
labels were created for subject, time, and region facets is in
Gelernter (2008). We limited the number of categories for
each facet to between 10 and 15 because it has been shown
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that too many categories per level make browsing by cat-
egory complicated visually (Theeramunkong & Lertnattee,
2002, p. 1).

How did we create category labels for subject? The Library
of Congress classification which we used as a basis for subject
labels was itself created for the fairly balanced collection of
the Library of Congress (Leydesdorff & Rafols, 2009, p. 349).
To make our labels, we started with the headings from the
main schedules of the Library of Congress classification sys-
tem, and condensed the 18 schedule headings to 12 logically
related classes. The reason for condensing the labels was both
to balance the data in our sample and to improve readability
for a browse menu. Each of the categories will subdivide if
we need finer-grained categories.

The beauty of the browse menu is that each category may
unfurl separately if needed in an expanded system. As an
example, the subdivisions for the Modern category of the time
facet are active in the prototype. Subdivisions for the subject
facet of the prototype are included to suggest what each cat-
egory contains and to facilitate browsing. Would cooking be
found within Agriculture and Food, for example? Selecting
the browse category shows:

• Agriculture and Food
Conservation and parks; Farming; Gardens; Hunting and fish-
ing; Livestock; Veterinary medicine; Weeds and pollutants;
Wildlife

As it turns out, cooking is a subdivision of “Society”:

• Society
Behavior: Of individuals, of groups; Lifestyle and family;
Psychology and personality; Customs: Life cycle; Sports and
games; Home and cookery; Hospitality; Language: Present
and past languages; Linguistics

Ontologies for Each Indexing Domain

Different ontologies comprise different vocabularies, so
the choice of ontology must affect retrieval. What did we
choose, and why? We needed ontologies that we could
download. We refined each domain ontology for comprehen-
siveness (extent of the vocabulary) and specificity (precision
of the vocabulary) during iterative testing with the training
set. Future research could include comparing classification
results using different ontologies. But the high accuracy we
have obtained suggests that the ontologies selected were good
choices.

We refined the ontologies based on what we learned
from misclassifications. For example, we began using the
highly detailed GeoNames for region. We discovered it was
misclassifying items due to matching metadata with local
parks or obscure villages listed in GeoNames, because many
of the same place names are found in different parts of the
world. When we substituted the slimmer World Gazetteer
and reserved the more detailed GeoNames for a second pass,
our results improved dramatically. As another example, mis-
classifications by subject suggested that our ontology was

not rich enough. Our attempts were unsuccessful to get a
complete Library of Congress classification system in digital
form beyond the classification outline available on the open
Web.4 So to add words to our subject ontology, we organized
Machine Readable Catalog records from 130,000 randomly
selected books according to the Library of Congress classi-
fication numbers to align them with our categories. We then
removed their Library of Congress Subject Headings from the
records and added them to the correct categories—an addi-
tion of about 800 words. We weighted phrases and individual
terms as excellent, very good, and good indicators of cate-
gory as before. The combination of classification label terms
and subject headings classified many more training set items
accurately.

Most indexing by time relied on dates mined from the
articles. Because numerical data is unambiguous with respect
to one of our time categories, semantic help was necessary
rarely. This was fortunate in that no ready-made ontology
for time was found. We compiled a short list of time words,
extracted in part from the history schedule of the Library
of Congress classification system but did not use it much for
classification. For a more extensive corpus, the time ontology
probably will need expanding as well.

Classifier Algorithms

Automatic classification is generally approached either by
machine learning or knowledge engineering, as mentioned in
the Introduction. The aim either way is to look at a quantity of
data, discern patterns, and make rules based on those patterns.
The best rules have the highest predictive accuracy for map-
ping independent variables (here, map images) to dependent
variables (here, classification categories). We did not have the
vast amount of training data necessary for machine learning,
and besides, knowledge engineering is able to produce high
rule-per-rule reliability.

We created three rule sets by examining the metadata for
patterns that seemed to explain classification of the item by
region, time, and subject. Heuristic rules for time and sub-
ject classification were created entirely by observation of the
training set. In the case of region, observation was combined
with principles reported by Leidner (2007).

Each of our classifiers works with its corresponding ontol-
ogy. It is possible to classify from metadata to categories
directly, without a controlled vocabulary or ontology. Even
so, ontologies have been found to improve information
retrieval (Kabel et al., 2004).

The three sets of heuristics were coded using Perl to
make the three classifies. Coded heuristics may be applied
sequentially in some order, or in parallel and all at once.
An advantage of the sequential method is that rules can be
ordered to place the rules of highest predictive value first, but a
disadvantage is that lower-ranked rules are harder to interpret.
While rule interpretation is easier with the parallel method,

4http://www.loc.gov/catdir/cpso/lcco retrieved January 2009.
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a higher priority rule may be undervalued in favor of a rule
with lesser value in predicting a classification, possibly mak-
ing the classification less accurate. We elected sequential
ordering of heuristics primarily because we use metadata
location to help judge reliability and boost classification
accuracy.

We refined and debugged the classifiers by repeatedly
running through the 150-item training set, examining mis-
classifications, and writing and then coding new rules in an
attempt to improve classification accuracy. We continued to
run the training data and alter the algorithms until we were
fairly satisfied with the classifications that resulted. Then we
halted this process and let the algorithms stand. At this point,
a test set of 55 maps previously unseen by the system was
run only once in an attempt to measure the accuracy of each
classifier. The results are reported below in the Evaluation
section.

Indexing by Subject

The indexing procedure adjusts to whether we index by
region, time, or subject. Processing begins by removing meta-
data pertaining to the map and organizing it by field. The
metadata are indexed three times: once matching to the region
ontology that classifies into region categories, once match-
ing to numbers that classify directly into time categories, and
again matching to the subject ontology to classify into the
subject categories. Subject indexing differs from region and
time indexing because, among the metadata per item, a vast
number of terms superficially could assign the item to very
many categories. However, we do not want to classify each
item into a large number of subject categories; instead, we
need to reduce the dimensionality of the feature subspace.
How to reduce the feature subspace by absolute means is a
problem that occurs in many disciplines, and it is one that
has been treated using statistical methods with some success
(Dalalyan, Juditsky, & Spokoiny, 2008). Typically, for text
processing, a system of weighting is used to prioritize some
features over others.

Methods used to reduce the subspace include frequency of
occurrence of the term in the document (Jain et al., 2004, for
example), term co-occurrence (Liu,Wang, & Liu, 2004), term
similarities as determined from the structure of the ontology
(El Sayed, Hacid, & Zighed, 2007a), location of the term is
found in the document (Macdonald & Ounis, 2006), or some
combination of these.

Weighting to Determine the Subject

We prepared our subject ontology by assigning weights
to individual terms. We decided that short phrases were the
very best indicators of category. We added double stars to
terms that were very good indicators of category, and single
stars to terms that were good indicators. Ontology terms we
did not single out in any way became a plain match with
the target. Why did we score phrases so highly? It has been
determined that target documents that contain an exact query

phrase are more relevant than documents containing merely
the query words (Yeganova, Comeau, Kim & Wilbur, 2009,
p. 272). Words that appear more than once in the metadata are
weighted depending upon the number of their occurrences.
That repeated words are important is explained by Zipf’s law,
which predicts that a document’s core vocabulary is likely to
be repeated much more frequently than words less important
to the core topic (Manning et al., 2008). Given Zipf’s law,
then, the more frequently-occurring words are more likely
indicators of the dominant subject.

In binary indexing, each term weighs in at 1, despite its
frequency, whereas in weighted indexing, a term assumes a
different weight depending upon its importance such as its
function or location in the document (Salton & McGill
1983).5 Note that weights attached to ontology words make
the classification results appear mathematically precise. We
italicize appear because the ontology itself might be missing
terms or branched unsuitably.

We used location of metadata word, frequency of word
occurrence and category indicator potential of word (from
the ontology) to determine the item’s weight. We set our
numerical weights by trial and error: if results showed that the
items were being classified correctly, we kept our arbitrarily
assigned weights. The subject ontology has words repeated
among categories, as shown below (for instance, “experi-
mental” appears in both Medicine and Science), so a match
between just any ontology word and the target metadata
scores minimal points. Determining an optimum numeri-
cal balance for weighting could be treated statistically, but
many more examples would need to be considered than were
available for this research.

In brief, the weighting system adds priority to terms in the
metadata (by field) and to terms in the ontology (by strength
of connection to a category). An item classified by subject
without the benefit of a weighting system would appear in
every category in which its metadata terms match ontology
terms, while an item classified using a weighting system will
be assigned only to the category of its dominant subject.

Example of MapSearch Weighting

Following is an example of how the weighting system
assigns rules that prioritize metadata and determines which
subject is dominant and should be used for classification. The
MapSearch weighting system assigns point values to meta-
data words given each word’s location in the article and the
ontology term it matches with. Numerical values are assigned
based on supposed relevancy to the map, so that fields clos-
est to the map weight most heavily. For instance, a word
with a weight of 8 might come from the caption whereas
a word with a weight of 4 might come from the title; the “8”
word is therefore a better indicator of classification for the

5We extracted some lines from our code, temporarily available at
http://scilsresx.rutgers.edu/∼lesk/t-class4.html, to demonstrate weighting.
Enter any actual or imagined caption, map label, article title and sentence
that refers to the caption and your item will be classified in to one of our
MapSearch subject categories.
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map. Actual values were arrived at through experimentation.
Below is an excerpt from our weighting system:

Weights for words in the ontology
Phrases6 40 × number of occurrences
Word double star 10 × number of occurrences
Word single star 5 × number of occurrences
Word no star 1 × number of occurrences

Weights for words in the target metadata
Caption words 8 × number of occurrences
Words-in-map 8 × number of occurrences
Title words 4 × number of occurrences
Referring sentence 2 × number of occurrences
Repeated words 1 × number of occurrences

The sample item to be classified is a map extracted from
an article on the cultivation of sweet potatoes in early New
Zealand.7 It is a vector map in kilometer scale of New Zealand
that uses diagonal hatch lines to indicate growing regions.
Inset in this map to the right is a smaller map that shows New
Zealand in its watery island context, just east of Australia.
The inset middle left map in larger scale than the main map
details the growing regions. Indications of the map theme are
the key label “Kumara growing regions,” and the “southern
limit of Kumara gardening”. These words are too small to
be recognized by present scanning programs. Therefore, we
rely on metadata in the article to determine the map theme
automatically.

Metadata for classification come from text mined from the
article: the map caption, article title, and sentence(s) in the
article that refer to the map. The section of the output below
lists the extracted metadata by field. The difference between
what is found below and the text as it appears in the article
is that punctuation, italics, diacritics, and capital letters have
been removed to facilitate the match process.

CAPTION: fig 2 map of new zealand

TITLE: experimental archaeology gardens assessing the pro-
ductivity of ancient maori cultivars of sweet potato ipomoea
batatas in new zealand

REFERRING: of the four pre european kumara cultivars con-
sidered by maori informants to be of pre european origin or
introduction yen 1963 33 rekamaroa was collected from rua-
toria the east coast and the bay of plenty hutihuti from the east
coast bay of plenty and northland taputini from northland and
houhere from two locations in northland yen 1963 see fig 2

The next section of output shows the words from each
metadata field that matched with words in the ontology,
as organized by classification category. The categories are
the browse categories in the MapSearch theme facet. The
number after each word indicates its score. Notice in

6Phrases consist of two or more words which the algorithm treats not
individually but as a group. Instances of phrases in the category Medicine
are intensive care, first aid, operating room, and physical therapy.

7Example from Burtenshaw, M. & Harris, G. (2007). Experimental
archaeology gardens assessing the productivity of ancient Māori cultivars of
sweet potato, Ipomoea batatas [L.] Lam. in New Zealand, Economic Botany
61 (3), 235–245.

the Anthropology/Archaeology (ArchAnthro) category that
“archaeology” scored 40, 4 points for being in the title
field multiplied by 10 for its double-starred status in the
Archaeology/Anthropology section of the ontology.

Division of category points by metadata field
CAPTION: fig 2 map of new zealand

History: zealand/8
Politics: zealand/8

TITLE: experimental archaeology gardens assessing the pro-
ductivity of ancient maori cultivars of sweet potato ipomoea
batatas in new zealand

Religion: ancient/4 archaeology/4
Society: ancient/4 garden/4
ArchAnthro: archaeology/40
Medicine: experimental/4
Science: experimental/4
Agriculture: garden/40 gardens/4
Commerce: productivity/4
Arts: potato/4
Politics: ancient/4 zealand/4
History: ancient/4 zealand/4

REFERRING: of the four pre european kumara cultivars con-
sidered by maori informants to be of pre european origin or
introduction yen 1963 33 rekamaroa was collected from rua-
toria the east coast and the bay of plenty hutihuti from the east
coast bay of plenty and northland taputini from northland and
houhere from two locations in northland yen 1963 see fig 2

Religion: collected/2 european/4 see/2
Society: origin/2
ArchAnthro: collected/2
Medicine: collected/2
Science: prey/4
Technology: coast/4
Arts: collected/2
Military: coast/4
Politics: see/2
History: coast/4 collected/2 european/4 see/2 two/2

The last section of the output as shown below tallies points
per category. Again, the highest point value indicates the
strongest belongingness to a category. Therefore, the dom-
inant classification for this map is Agriculture as shown by
its point value of 44.

Category Totals
Agriculture 44
ArchAnthro 42
History 30
Politics 18
Religion 16
Society 10
Science 8
Medicine 6
Arts 6
Technology 4
Commerce 4
Military 4
Assignment: Agriculture and Archaeology/Anthropology
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FIG. 2. Map of New Zealand.
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The result is that this map was classified into two cate-
gories, Agriculture and also Archaeology/Anthropology. The
section below discusses why and how we gave this map a
second classification.

Multi-label Classification

Classification may be either single-label (also called abso-
lute or hard) with each item classified into a single category,
or multi-label (soft) with each item classified into one or
more categories. Of single label and multi-label, the single
label case is the more general of the two in that an algorithm
for single label classification can be transformed into multi-
label when the added categories are independent. Single label
classification is more commonly discussed in the literature
(Sebastiani, 2002).

Each category assignment in multi-label classification
holds only an estimated probability of being a correct assign-
ment. Absolute or hard classification generally is used in
situations where the probabilities are not of primary inter-
est (as for example, when the items are easily classifiable by
humans), whereas multi-label is used to help evaluate or com-
pare competing classifications (Wahba, 2002, p. 16524). Our
research employs multi-label classification because many of
the maps in the corpus can be classified into more than one
subject category.

We decided, based on manual classification of the training
set, that some maps require more than one subject category.
We turned the multi-label requirement into a weighting sys-
tem rule that the second highest scoring item must have scored
within a certain percentage of the top scoring item. We deter-
mined that percentage by experimentation with the training
set. Results showed that it is uncommon for the top two cat-
egories to score closely, say within 10% of one another, so
that multi-label classification would rarely be indicated. On
the other hand, it is quite common for the top two items to
score within 50% of each other, which risks making items
multi-label that rightly should belong to a single dominant
category. We decided based on trials with the training set to
adjust the percentage to 25% so that about a third of the items
would be assigned multiple subjects. The actual percentage
of maps assigned more than one subject is somewhat less
than one third in that 59 of the 205 maps in the corpus have
multiple subjects.

Sorting of Results

All retrieved results are relevant. But which among these
is most relevant? It has been found that users are particu-
larly likely to select the result listed first (Bar-Ilan, Keenoy,
Levene & Yaari, 2009, p. 148. What is first in the display
order is determined by the sort method. This section consid-
ers the relative ordering of results retrieved, acknowledging
that “[c]omparing two objects relatively is still one of the
biggest challenges and it now concerns a wide variety of
areas in computer science. . .” (El Sayed et al., 2007b, p. 49).

Users may choose between sorting results according to
semantic relevance to the keyword, or map size, image

quality, color variety, or article publication date. Only the
option of semantic relevance has a measure of subjective
judgment, but it is also the option many prefer in looking for
results. MapSearch determines semantic relevance by count-
ing the number of steps between the query and the domain
ontology. So that, for example, a query for Europe that
retrieves maps of Paris, Europe, France in the result set will
order the maps of Europe first, France second, and Paris third.

Absolute measurements for sorting are our options
image quality, color variety, map size, and publication date.
Image quality describes the sharpness of the map edges and
is measured by converting each image to grayscale and mea-
suring the between-pixel transition from black to white and
white to black. Map size is measured by the total number of
pixels. Color variety is measured by the number of different
colors that appear in a map. Publication date refers not to
date of the map itself, but instead to the date of the article
that contains the map.

Evaluation

Methodology

We tested the effectiveness of the automatic classification
by designing an experiment to compare manual and auto-
matic classification of the same items. Human indexing of a
test set of maps became the ground truth. The test set was
composed of 55 maps assembled from journal articles cov-
ering a range of disciplines. A larger sample would increase
experiment validity, but the sample was limited for the sake of
the participants who were asked to index each item into three
categories manually. Our planning was justified. As it turned
out, the participants required several hours and several rest
breaks to complete the work, and so a larger sample might
have introduced indexer fatigue and possibly inconsistency,
or even inaccuracy.

Two people with professional indexing experience clas-
sified the test items. Each participant was given a stack of
articles with the maps flagged, a category list with explana-
tions of what each category includes, a brief instruction sheet
explaining how to assign items to categories (one or two cat-
egories per item), and a blank spreadsheet to record category
assignments.

The items were ordered randomly. That random order
was retained for both participants to help us keep track of
the maps. Error could have been introduced by participant
fatigue, making classifications at the end of the sample less
accurate than at the beginning, or by participant inconsis-
tency, with a person’s conception of a category changing from
the experiment’s beginning to its end. Any negative conse-
quences that might result from retaining the same order with
two people were mitigated by the small sample size. We tried
to keep the experiment short (with a relatively small num-
ber of items to classify), and encouraged participants to take
breaks as needed. Also we gave participants freedom at the
end of the study to return to the choices they had made at
the beginning and make any changes they felt necessary.
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Procedure

When the participants had finished assigning our region,
time, and theme categories to each of the 55 test items, their
responses were compounded into a single list. The choice of
classification was unambiguous in the majority of cases, and
both participants selected the same category. When discrep-
ancies did appear they were most often in the theme facet. The
benchmark that was used for scoring thus in many cases con-
tained more than two theme categories, but only one region
or time category, and so the benchmark was more lenient in
scoring for theme than for region or time. The outcome was
that the system had wider latitude in choice of theme than
in region or time categories—which probably explains why
the agreement of results for automatic indexing of theme was
highest of the three facets.

Results

The benchmark categories for the 55 test maps were
entered into the system as the right answers. Then the sys-
tem was asked to index the maps. System assignments were
graded either right or wrong. The exception to this absolute
grading system was that we gave partial credit to subject
classifications in cases of predefined category overlaps.8 The
result was that MapSearch classified 75% correctly by region,
69% correctly by time, and 84% correctly by theme, with an
additional 9% classified as plausible.

Discussion

The participants commented that, of the three facets, they
had most difficulty assigning the theme subjects. Both relied
on the article to assign a subject when the map seemed to
be an illustration of the article, as suggested by the classifi-
cation instructions. Another problem shared by the indexers
was how to assign a time period to a modern map showing
historical sites when the sites themselves fall into the cate-
gories Prehistory or Antiquity. Both participants elected to
use the historical time period rather than the modern.

A larger training set would be the first step to improv-
ing classification of previously unseen terms. This is because
analyzing more misclassifications would help us create new
rules or alter the existing rules to improve generalizability
so that similar items would be more likely to be classified
correctly in the future.

How accurate does automatic classification need to be,
ultimately? In other words, when should one stop tinkering
in the hope of improving the algorithm? Larson (1992,

8The following interchanges were defined as plausible:
History and Travel with Archaeology and Anthropology; History and Travel
with Military; History and Travel with Politics and Law;
Society with Religion and Education;
Commerce and Finance with Politics and Law;
Science with Agriculture with Technology and Transportation; Science with
Technology and Transportation; Science with Medicine;
Technology and Transportation with Military; Technology and Transporta-
tion with Commerce and Finance.

p. 147) found in conducting an automatic classification exper-
iment that only 46.6% of the sample could be classified
correctly. Bates (1998, p. 1186) commented that it is typi-
cal for researchers to present a new system as 70% accurate.
She pointed out that achieving the last 30% is vastly more
difficult—all the more so as the collection grows.

Ideally, retrieval systems should be improved until they
perform perfectly. Practically speaking, however, retrieval
systems need only be reliable and perform useful work that
could not be done otherwise. Take Google, for example.
Google does not perform at 100% accuracy; in fact, its recall
suffers when it misses results relevant to a given query. But
even if an army of Web indexers could be found and paid, that
army could not keep abreast of billions of new and changing
web pages and return results instantaneously, as does Google.
This excuses Google’s imperfection. The same may be said
of MapSearch. The concept of indexing article components is
fairly novel. As the related work section shows, MapSearch
has few functioning competitors. We conclude that imperfect
results are better than none in retrieving maps from within
articles.

Future Research

Automating Subtasks

Some of the data mining performed manually for the pur-
poses of this research should be automated. Optical Character
Recognition methods will be involved in the extraction of a
map from its journal article, for example, and in the extraction
of the words within a map to be used for indexing. Federated
search protocols will be involved in adding new articles to
the corpus.

Improving Tools and Mechanisms

The system is limited, among other factors, by decisions
in the choice of classification categories, domain ontolo-
gies, and in the weighting of ontology terms. Each decision
was made in light of preliminary testing, but we cannot
test every alternative, so it is likely that potentially use-
ful tweaks that might improve accuracy have not yet been
discovered. It has been found that in machine learning, com-
bining classifiers yields better classification, provided that the
classification mistakes are somewhat independent (Manning
et al., 2008). Performance of multiple classifiers has been
attributed not only to independence but also to how classifiers
are combined, with parallel (horizontal) combination used for
high accuracy, and sequential (cascaded or vertical) mainly
used for accelerating large category set classification (Liu &
Fujisawa, 2008, p. 145). Combining our classifiers also might
improve result accuracy, as discussed further in Gelernter
(2008, p. 65).

Scalability

Some map-containing articles may not be able to be
included in full text in a map retrieval database due to copy-
right restrictions. When full text is unavailable, the database
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could link to the journal publisher Web site. Users with
access privileges would jump easily through the passwords
to access the entire article, and those without would see
publisher instructions as to how to subscribe.

There seems no reason to change the ontology domains,
even for a scaled-up corpus. The two-gazetteer, two-pass
system for region indexing is mature. However, for a large
corpus, the time and subject ontologies will need supplement-
ing in number and precision of words. To the time ontology
could be added terms found in the geologic time scale (with
eons, epochs, and stages), for example, and lists of style
terms for describing periods of art and architecture (such as
baroque). The subject ontology could be supplemented with
words from within the schedules of the Library of Congress
Classification.

The present browse categories in the prototype will con-
tinue to be applicable for a larger corpus, but the results
will be less useful because many more relevant items will
be retrieved per query. Therefore, finer-grained browse cate-
gories would help users view a manageable subset of what is
available. An example of how this might work is presented
in the subdivisions of the Modern time category in the proto-
type. The process of creating browse statistics for the users
also requires automation. Presently, the intersection of vari-
ous browse facets is precalculated so that, for example, choice
of “Oceania” gives the user message that the system will
retrieve nine maps, although coupling “Oceania” with the
“Early Modern” period will net no maps. For maps added
periodically to a much larger corpus, a formula will need
to be devised to quickly calculate for the home screen this
number of maps to be retrieved by the search.

MapSearch as a Model

We hope others will look to MapSearch for their research
in retrieving article components within a single inter-
face. Why aggregate article components? Those in agricul-
ture need soil maps, water and crop maps, for example,
those in finance profit from stock tables and past and
present stock values charted over time, and those in the
pharmaceutical industry want to see diagrams of chem-
ical structures. Vertical search engines restrict search to
a particular topic domain (Diligenti, Gori, & Maggini,
2002), and a subset of these are the Google custom search
engines devoted to a field of study (such as economics)
or a sphere of influence (such as the U.S. government).9

Like these, a system that makes article components available
would recommend itself to a group with common interests.

Conclusion

Some would benefit from direct rather than article-level
access to quantities of graphical elements such as maps or
charts or diagrams of chemical compounds. Our methods of
metadata extraction by field (caption, words in the article

9http://www.google.com/coop/cse/examples/GooglePicks retrieved May
12, 2009

title, etc.) and ontology-supported retrieval by region, time,
and subject, proven successful in the MapSearch prototype,
could translate to databases of other sorts of article compo-
nents. Other researchers are encouraged to test and improve
techniques presented here.
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